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Abstract
Time-dependent density functional theory (TDDFT) has become a standard tool for
investigation of electronic excited states. However, for certain types of electronic excitations,
TDDFT is known to give systematically inaccurate results, which has been attributed to the
insufficiency of conventional exchange–correlation functionals, such as the local density
approximation (LDA). To improve TDDFT performance within LDA, a modified linear
response (MLR) scheme was recently proposed, in which the responses from not only the
ground state, but also the intermediate excited states are taken into account. This scheme was
shown to greatly improve TDDFT performance on the prediction of Rydberg and
charge-transfer excitation energies of molecules. Yet, for a validation of this TDDFT-MLR
scheme for excitation energies, there remain issues to be resolved regarding Rydberg transitions
of single atoms before going to larger systems. In the present work, we show an adapted
algorithm to construct the intermediate excited states for rare-gas atoms. With the technique,
Rydberg transition energies can be well decoded from LDA, as will also be shown in the
application of the TDDFT-MLR scheme to other types of atoms.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Density functional theory (DFT) [1, 2] has become the
most successful method for calculating ground-state properties
of condensed matter. This success is largely rooted in
the simplicity of conventional exchange–correlation (xc)
functionals, such as the simplest local density approximation
(LDA). LDA also plays an important role for calculations
of excited-state properties within the framework of time-
dependent density functional theory (TDDFT) [3–5], which
has emerged as a reliable standard tool for the investigation
of excited-state properties in recent years. Time-dependent
LDA (TDLDA) is often formulated in real time, which
facilitates the calculation of excited-state dynamics [6–8]. To
calculate optical spectra, TDDFT is usually combined with
linear response (LR) theory: Given a weak instantaneous
perturbation, the Kohn–Sham wavefunctions are propagated

for a sufficiently long time, and then the density (or dipole)
response is obtained and analyzed to give excitation energies.
This approach has demonstrated that TDLDA is able to give
good results for large systems in a computationally efficient
way [9–11].

In quantum chemistry, TDDFT-LR is preferably formu-
lated in the frequency domain, without explicitly propagating
Kohn–Sham wavefunctions. The calculation of excitation
energies is recast into a pseudoeigenvalue problem, known as
the Casida equation in the matrix form [12, 13]. Due to its
efficiency for small and medium-sized molecular systems, this
approach has been widely implemented in standard quantum
chemistry packages. Extensive calculations show that it can
generally give good predictions on valence excitation energies.
However, for Rydberg and charge-transfer excitations, there
is systematic underestimation of excitation energies from
TDDFT. The topic of how to improve TDDFT performance
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on these problematic excitations has been the focus of wide
attention. In most studies, effort has been concentrated to
develop xc functionals with correct long-range behaviors. The
typical recipe is the asymptotic correction of local xc potentials
at large distances to show − 1

r behavior of the exact xc
potential [14–17]. TDDFT performance has been improved
by these methods, nevertheless, adjustable parameters are
often introduced and a unified treatment has not been drawn
up yet.

In our previous works, we have examined the above
problems of TDDFT from a different point of view. That
is, we try to improve the TDDFT methodology on how to
calculate excitation energies from the LR scheme. In TDDFT
within ordinary LR, the excitation energies are obtained from
the response of the ground state to the applied perturbation. In
contrast to this scheme, we presented a modified LR (MLR)
scheme: responses from not only the ground state but also the
intermediate excited states should be taken into account and
the final result is an average of excitation energies from these
responses. This scheme was shown to greatly improve TDDFT
performance on the prediction of Rydberg and charge-transfer
excitation energies of molecules [18, 19], and its efficiency is
further demonstrated in calculating nonadiabatic couplings in
molecular systems [20, 21], without any correction to the LDA
functional.

Apart from the molecular systems, the application of
TDDFT-MLR to atomic systems has not been done yet.
Although it is anticipated that this can be done in a
straightforward way, such an application is not necessarily
trivial, concerning some arguments on the performance of
LDA. The xc hole of the uniform electron gas is used as
model for the exact hole in LDA. In the bonding region
between two atoms, the LDA model hole resembles the exact
exchange hole, which becomes more isotropic than in the
separated atoms: The centered LDA exchange hole is a better
approximation for the more homogeneous molecular density
than for the more inhomogeneous density of atoms [22].
Therefore, there remains work to be done for the validation
of TDDFT-MLR/LDA for single atoms, as done in molecular
systems.

In the present paper, we report our recent calculation
results of atomic excitation energies by TDDFT-MLR/LDA
for various types of atoms. Except for rare-gas atoms, which
need an adapted algorithm to construct intermediate excited
states, all calculation procedures are kept the same as in the
molecular systems. Our result will show that the TDDFT-MLR
scheme achieves good accuracy for both valence and Rydberg
transitions in all the atomic cases studied in this work.

2. Methodology

2.1. TDDFT-LR: Formulation of response from the
ground state

In TDDFT-LR, a weak perturbation is applied to the ground
state of the Kohn–Sham system and the response is examined.
For real perturbations δvappl(ω), the Casida formalism [12, 13]

gives the real part of the density matrix δP(ω) as

fkτ − flτ >0∑

klτ

[
δσ,τ δi,kδ j,l

εiσ − ε jσ

fiσ − f jσ
− 2Ki jσ,klτ

− ω2 δσ,τ δi,kδ j,l

( fiσ − f jσ )(εiσ − ε jσ )

]
(Re δPklτ )(ω)

= δv
appl
i jσ (ω), (1)

where fiσ and εiσ are, respectively, the occupation number and
eigenenergy of the i th orbital with spin σ in the unperturbed
ground state. The coupling matrix K has a Coulombic and an
xc part. From the pole condition of δP(ω), we get the following
Casida equation,

ΩFI = ω2
I FI , (2)

where the eigenvalue ω2
I is the squared excitation energy of

transition I , and the matrix element of Ω is

�i jσ,klτ =δσ,τ δi,kδ j,l(εlτ − εkτ )
2+2

√
( fiσ − f jσ )(ε jσ − εiσ )

× Ki jσ,klτ

√
( fkτ − flτ )(εlτ −εkτ ). (3)

2.2. TDDFT-MLR: Formulation of responses from the
intermediate excited states

In TDDFT-MLR, the responses from not only the ground state
but also intermediate excited states are taken into account.
The average excitation energy can be approximated from the
calculation of the mid-excited state (Slater transition state),
in which a half electron is promoted from the donor orbital
to the acceptor one. The original Casida equation is general
enough to treat fractional occupation number and in principle
ready to be used for MLR calculations. On the other hand, to
circumvent the case that the expression inside the square root
in equation (3) could be negative in mid-excited states, we use
the separation procedure εlτ −εkτ > 0 instead of fkτ − flτ > 0
in equation (1) and then derive the pseudoeigenequation in
a similar way while using the nonsymmetric form of the Ω
matrix [19],

�m
i jσ,klτ = δσ,τ δi,kδ j,l(ε

m
jσ − εm

iσ )2

+ 2( f m
iσ − f m

jσ )(εm
jσ − εm

iσ )K m
i jσ,klτ , (4)

which holds for arbitrary occupation number difference.
Since TDDFT-MLR uses the mid-excited state as the

reference state, it is often questioned on its similarity to the
Slater transition state method. An analysis of equation (4)
reveals that the MLR scheme imposes a TDDFT correction
to the Slater transition state method and is more rigorous in
general cases. Even if the off-diagonal elements of Ω is
small, there can still be a considerable correction to the bare
eigenenergy difference in the diagonal elements. On the other
hand, there are often cases where TDDFT-MLR and the Slater
method give similar results. An example are the doublet–
doublet transitions without involving degenerate orbitals. In
such conditions, f m

iσ = f m
jσ (=0.5) and the result of TDDFT-

MLR becomes equivalent to that of the Slater method.
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Table 1. Singlet–singlet excitation energies (in eV) of alkaline earth atoms by different methods: TDDFT-LR within LDA, TDDFT-LR
within asymptotic-corrected (AC) LDA, the Slater transition state method within LDA, and TDDFT-MLR within LDA. Each transition is
labeled as valence (V) or Rydberg (R) in character. Experimental energies are taken from [30]. LR/AC-LDA results are taken from [17].

Atom Transition LR/LDA LR/AC-LDA Slater/LDA MLR/LDA Expt.

Be V: 2s → 2p 4.95 4.84 3.52 4.68 5.28
R: 2s → 3s 5.55 6.38 6.69 6.74 6.78
R: 2s → 3p 5.93 6.98 7.33 7.35 7.46

Mg V: 3s → 3p 4.43 4.37 3.50 4.27 4.35
R: 3s → 4s 4.71 5.45 5.46 5.50 5.39

Ca V: 4s → 3d 1.87 1.73 2.16 2.28 2.71
V: 4s → 4p 3.24 3.24 2.48 3.15 2.93
R: 4s → 5s 3.74 4.22 4.11 4.15 4.13

Table 2. Doublet–doublet excitation energies (in eV) of alkali metal
atoms. Each transition is labeled as valence (V) or Rydberg (R) in
character. Experimental energies are taken from [30].

Atom Transition LR/LSDA MLR/LSDA Expt.

H R: 1s → 2s 7.29 9.75 10.20
R: 1s → 2p 7.49 9.99 10.20
R: 1s → 3s 7.47 11.78 12.09

Li V: 2s → 2p 2.00 1.87 1.85
R: 2s → 3s 3.03 3.35 3.37
R: 2s → 3p 3.36 3.79 3.83

Na V: 3s → 3p 2.22 2.19 2.10
R: 3s → 4s 2.92 3.18 3.19
R: 3s → 3d 3.19 3.79 3.62

3. Results and discussions

Calculation of atomic excitation energies are carried out using
the ABINIT code [23, 24] in the framework of the planewave
pseudopotential approach, in which our MLR scheme has
been implemented within adiabatic LDA/LSDA. We use the
Perdew–Wang 92 functional [25], which is a reparametrization
of the Ceperley–Alder data [26]. The Troullier–Martins (TM)
pseudopotentials [27] generated by Khein and Allan, with
the inclusion of nonlinear core correction [28], as well as
Hartwigsen–Goedecker–Hutter (HGH) pseudopotentials [29],
are used for various atomic species. Since Rydberg states
are spatially extended, it is necessary to use sufficiently large
supercells. It is worth emphasizing that not only accuracy but
also SCF convergence of mid-excited states can be worse with
insufficient supercells. Due to the fact that upper Rydberg
states might require larger supercell sizes, we have used a size
range of 30–50 Bohr in our calculations.

3.1. Singlet–singlet transitions

In table 1 we list calculation results of singlet–singlet
transitions in the alkaline earth atoms Be, Mg and Ca by
various methods: TDDFT-LR within LDA and asymptotic-
corrected LDA, the Slater transition state method within LDA,
and TDDFT-MLR within LDA. It is noted that the calculated
results are vertical excitation energies, i.e., atomic positions
are fixed during the electronic excitation. In molecular
systems, experimental vertical excitation energies have to be
calculated from spectroscopic constants, while for single atoms
this work is removed and a direct comparison is available.

The comparison shows that the TDDFT-LR/LDA results are
relatively good for valence excitations, but not for Rydberg
transitions. Contrarily, the Slater method gives good results
for Rydberg transitions, but not for valence excitations, as
discussed in our previous work on the basis of the approximate
excitation energies from the �SCF method [18]. In contrast,
TDDFT-MLR/LDA achieves good accuracy for both valence
and Rydberg excitations. The accuracy is comparable to that
of asymptotically-corrected LDA calculations, although in our
case we do not impose any correction to the LDA functional.

3.2. Doublet–doublet transitions

In table 2 we list calculation results of TDDFT-LR and MLR
within LSDA, together with the experimental data, for doublet–
doublet transitions in alkali metal atoms H, Li and Na. All
transitions in the hydrogen atom are Rydberg transitions: The
transition energies are severely underestimated by ordinary
LR, while greatly improved by the MLR scheme. For
lithium and sodium atoms, excitation energies of the Rydberg
transitions above the valence excitations are not so severely
underestimated but still improved by TDDFT-MLR. It is worth
mentioning that the Slater transition state method gives results
very similar to those of TDDFT-MLR, suggesting that the
TDDFT correction to the Slater method is rather small for these
doublet–doublet transitions.

3.3. Transitions in rare-gas atoms

The previous calculations of atomic excitation energies are
performed by using the calculation procedures the same as
in molecular systems. However, for rare-gas atoms, it is
found that the scheme of constructing the mid-excited state
of singlet–singlet excitations in general atomic and molecular
systems, as represented by the s1 state in figure 1, cannot be
straightforwardly applied. Instead, the other one in figure 1,
the m1 state, should be used. Conceptually, the s1 state
can be regarded as the linear combination of two m1 states
(corresponding to the promotion of either a spin-up or spin-
down electron, respectively). Therefore, it is the mimic of
the eigenfunction of Ŝ2 when the total spin S = 0. For
general singlet–singlet excitations, the s1 state would be the
natural choice for the mid-excited state. It is known to
be higher in energy than the m1 state [31]. However, the
unique closed-shell structure of the rare-gas atoms makes the s1
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Figure 1. Schematic view of the mid-excited states of the
singlet–singlet excitations. The s1 state is constructed by equally
promoting the spin-up and spin-down electrons to the acceptor
orbital with a total amount of one half, while the m1 state is by solely
promoting a half spin-up (or equivalently, spin-down) electron with
the use of the spin-unrestricted formalism.

state (obtained from self-consistent calculations within LDA)
have too many excited-state components to stand for the mid-
excited state. This can be understood from the performance
of the Slater transition state method within LDA for rare-
gas atoms, as shown in figure 2, in which we compare the
theoretical and experimental atomic excitation energies of He.
The plot indicates that the energies computed by the Slater
method, which is the bare eigenenergy difference of the s1

state, appear to be considerably overestimated. This is rather
different from its behavior in other cases of either atomic or
molecular systems. The peculiar behavior of rare-gas atoms
is also reported in the literature. It is pointed out that the
rare-gas atoms are not a fully representative testing ground
for the calibration of new xc functionals for the calculation
of polarizabilities [32]. Bearing this in mind, we adapt our
MLR scheme to utilize the m1 state for rare-gas atoms. By
doing this, our TDDFT-MLR values within LSDA show good
accuracy on predicting excitation energies of He, as compared
to the experimental data or the energies from asymptotically
accurate LB94 potentials.

Calculation of excitation energies of rare-gas atoms
involves more subtleties. The closed-shell structure of these
atoms might require ‘hard’ pseudopotentials with high cutoff
energies to construct the mid-excited states. In figure 3 the
dependence of the 2p → 3s transition energy of Ne on the
cutoff energy of the HGH pseudopotential is shown. The
difference between results of 100 Hartree and 150 Hartree is
still ∼0.05 eV, thus a high cutoff energy is required for accurate
results. We have also tested the soft TM pseudopotential of
Ne and found the difference can be as large as ∼0.5 eV. In
comparison, the conditions of pseudopotentials are not so strict

Figure 2. Atomic excitation energies of He, calculated by
TDDFT-LR within LDA and asymptotically correct LB94
functionals, the Slater transition state method within LDA (using the
s1 state), as well as TDDFT-MLR within LSDA (using the m1 state).

Figure 3. Dependence of the 2p → 3s transition energy of Ne on the
cutoff energy of the HGH pseudopotential.

for He and Ar atoms. We have used the TM pseudopotential
with a 30 Hartree cutoff for He, and the HGH pseudopotential
with a 70 Hartree cutoff for Ar. In table 3 we list the
calculation results for He, Ne and Ar. The Slater/LDA method
systematically overestimates excitation energies, while our
MLR/LSDA scheme achieves the same-level accuracy as that
of the LB94 functional. The working mechanism of the m1

state in MLR still needs to be explored and might be important
for reducing the ambiguity in MLR.

4. Conclusion

We present calculations of atomic excitation energies by
time-dependent density functional theory within modified
linear response, using a local (spin) density approximation.
Similar features are observed in single atoms as in molecular
systems: good performance of modified linear response is
shown for either valence or Rydberg transitions. For rare-
gas atoms, we present an adapted algorithm to construct
intermediate excited states, due to their unique closed-shell
structures. Finally we would like to point out that because

4



J. Phys.: Condens. Matter 21 (2009) 064229 C Hu et al

Table 3. Singlet–singlet excitation energies (in eV) of rare-gas
atoms. All transitions are Rydberg (R) in character. Experimental
energies as well as calculation results by TDDFT-LR within LB94
are taken from [17].

Atom Transition Slater/LDA LR/LB94 MLR/LSDA Expt.

He R: 1s → 2s 21.69 20.4 20.17 20.6
R: 1s → 2p 22.67 20.8 21.16 21.2
R: 1s → 3s 24.13 22.5 22.68 22.9

Ne R: 2p → 3s 17.67 17.3 17.01 16.7
R: 2p → 3p 19.66 19.0 19.09 18.7
R: 2p → 4s 20.55 20.0 19.93 19.7

Ar R: 3p → 4s 11.89 11.6 11.54 11.6
R: 3p → 4p 13.48 13.3 13.15 13.1

of the simplicity of the modified linear response scheme,
we anticipate further applications to condensed systems with
localized states, such as the excitations of semiconductor
defects or surface/adsorbate systems.
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